Lecture 8 Water use and management -Agriculture and Sanitation April 2, 2025, 14.30 – 16.00 (Sw time 11.30 – 12.00 – 13)

Lars Hylander Farmer and PhD Agron. Kungsgarden@telia.com

Disposition

Basics for CULTIVATION

Basics for SANITATION

Basics for IRRIGATION

* Conclusions

Lars Hylander Kungsgarden@telia.com

Humans

Human basics for living: Breathing, sugar and other energy sources, water and nutrients, space, sanitation...

	(gy transforn e.g.for nuscle work				
Sugar	Oxygen	C	arbon diox	ide Wat	er	
C6H120	06 + 602 -	·>	6 CO2	2 +	6 H2O	

Note that energy cannot be destroyed but transformed between different forms: electricity, light, heat, muscle/mechanical work etc.

Resembles the needs of plants

- They are also respiring and are using energy sources when it is dark.
- But in **sun**shine they **produce new energy storages** (sugar, starch etc) via fotosynthesis.

Fotosynthesis

Carbon dioxide WaterSunlightSugarOxygen6 CO2 + 6 H2O------> C6H12O6 + 6 O2

https://www.youtube.com/watch?v=C1_uez5WX1o

Basics for growing: NPK+H2O

https://www.hydrogarden.se/odlingssystemkrukor/bevattning -pumpar/droppbevattning/

Certainly also CO2, accessed freely from the air.

What is nitrogen, phosphorus, and potassium? Where to find it in "life"?

P: DNA, RNA, ATP, phospholipids + teeth and bones.

N: air, DNA, RNA, amino acids (proteins in beans, peas, milk, muscles) K: in liquids, electrolyte balance, function of membrane, muscle, nerve

- N: Widely used in fertilisers, eplosives etc
- P: Widely used in fertilisers, detergents, pesticides, Coca Cola etc
- K: Widely used in fertilisers, soaps, salt, also in match heads, etc

Urine is perfect as a fertiliser. Supplies N, P, K and micro nutrients.

The Effect of Bio-Char Soil Amendments and Urine Application on Yield and Quality Parameters of Sweet Corn (Zea mays var. rugosa), Eggplant (Solanum melongena) and Bitter Gourd (Momordica charantia)

Researchers: Study Period: Stephen O. Lee, Glenda Y. Sol, Elmer G. Elorde Jr, Robert J. Holmer July 1, 2007 to June 31, 2008

Factor 1: Use of charcoal (C)

with charcoal (at 200 g/hill as basal application before transplanting)
 without charcoal (corresponds to actual SOP)

Factor 2: Use of urine (U)

with urine (at 142m Vhill as side dress application 15 days after transplanting)
 without urine (corresponds to actual SOP)

Four replications: a, b, c, d

A Xavier University Research Project under the Matteo Ricci Research Award of the Kinaadman Research Center conducted by the Periurban Vegetable Project

Nutrient recycling without any poisons! Gold water (urine) is gold worth for your plants.

Foto: Lars Hylander Kungsgarden@telia.com

Soil improvement

- In sandy soils, water soluble nutrients are leached away when raining.
- This can be counteracted by adding charcoal, called biochar.

Charred wood is persistant against degradation.

Will remain in the soil for thousands of years.

It is a safe carbon sink.

Mycel of fungus and plant roots love biochar

Richard Haard, February 12, 2007

Retaining nutrients in soil c.f. Terra Preta in rain forests.

Photo of charcoal of pine.

Figure 13. Scanning electron micrograph of pine (*Pinus* sp.) charcoal from Barton Creek Cave.

Similarities with a honey comb thanks to the cell walls.

Biochar in a Swedish compost.

Effectively reducing emissions and losses of nitrogen.

Sustainable sanitation

Dry toilets are optimal Recovering 99 % of all plant nutrients

<u>The function may be improved by separating the urine.</u> <u>Char coal will remove odors and reduce N-emissions.</u>

Photo: Lars Hylander of his dry toilet. Kungsgarden@telia.com

Insertion for dry toilet to separate urine (in the bowl to the left) from feces (falling down into a container to the right).

View from above.

A tube is connected in the bottom of the urine bowl and led to a container (and stored a few weeks before used as a fertiliser).

Portable urinal for women

A urinal is easy to install

Many fabricates of composting toilets e.g. CompostEra

http://www.compostera.se/co mpostera.se/CompostEra.html

- Mullis,

http://www.mullis.se/http___mullis.se_eng_home.html/Home.html - Clivus multrum, http://www.clivusmultrum.com/

Alternative to dry toilets:

Vacuumtoilets reduce water used for flushing.

- Wostman has a porcelain chair. http://www.wostman.se/en/ecodry A separate tank (fabricates: Wostman, Jets etc) gives a better possibility to recycle the nutrients in an environment-frienddy way than a toilet connected to the municipal sewage system.

Three pipes out: separate handling of toilet waste in apartments

The residential buildings in Ocean hamnen Hälsingborg are connected to three separate waste pipes:

- A. a vacuum pipe from the toilets to obtain concentrated fertilizer
- B. one pipe for baths, dishwashing & washing machines to sort out fairly clean water.
- C. one pipe for ground food waste gives biogas. https://nsva.se/vatten-och-avlopp/ditt-avlopp/tre-ror-ut/three-pipes-out/

Why using a dry toilet system?

Hinders spreading of infections from the toilet waste.

Drastically reducing the water consumption.

No smell. Hardly any work (emptying every 20th year if the container is big enough.)

Hinders eutrophication of surface waters (rivers, lakes, seas).

Produces fertilisers to a sustainable agriculture.

It does not damage our important provision – Safe drinking water.

Drinking water is scarce

- Water covers 71 % of the Earth's surface.
- 97 % of water on Earth is in the Oceans. Too salty to drink for humans.
- Only 3 % of water on Earth is fresh, of which 2.5 % is unavailable (locked up as ice, highly polluted, too deep under the surface etc. or vapor in the atmosphere. (A tiny fraction may be extracted from air humity)
- So only 0.5 % is available fresh water.
- How to use the freshwater wisely?
- Is it wise to contaminate a food resouce with faeces, e.g. by using it as a transport medium from the toilet of faeces?

Drinking water consumption in Sweden

	Per capita	Relative use
	(l/p/d)	(%)
• Households	198	57
 Industries 	35	10
 General services 	35	10
• Losses and own u	se 79	23
• Total	347	100

• Source: VAV, 1995 from Rydén et al. (ed.) 2003. Environmental Science, ch. 17.

Water use Consumption						
Relative use	(l/p/d)	(%)				
 Food and drink 	10	5				
 Toilet flushing 	40	20				
• Laundry	30	15				
 Dish washing 	40	20				
 Personal hygiene 	70	35				
 Miscellananeous 	10	5				
• Total	200	100				

Source: Rydén et al. (ed.) 2003. Environmental Science, ch. 17.

Urin separating toilet should be compulsory at new installations!

Separates 60% of P from the waste water, 80% of N and 90% of K.

Hylander, L. D. 2006. Släng inte fosforn i sjön! Forskningsnytt om økologisk landbruk i Norden. Nr 3, 2006, s. 4-6.

http://www.wost-man-ecology.se/assets/images/autogen/ Dubbelspolande_System__WM_DS_NBanner.jpg

If using a WC, the waste water needs to be cleaned, e.g. in a filter

Good functionality of a wooden filter.

Easy to construct. 1. Dig a hole.

2. Put a bottom layer of chopped wood.

3. Build channels of logs and planks.

- **4.** Cover the logs with a "roof".
- **5.** Fill with chopped wood.

6. Completed.

All can be built by wood to avoid concrete and plastic waste accumnulation.

Inspection well

Waste water at the_ bottom of the well before entering the filter.

Analytical results for waste water having passed a filter of chopped wood.

Date	N _{tot}	P _{tot}	BOD ₇	Esc. coli
	(mg/L)	(mg/L)	(mg/L)	(cfu/100mL)
Incoming	>50	16.6		
March 2018	3.4	0.32	5.9	< 1
Limit value for Sweden	< 15	< 1.3	< 10	< 1

Can biochar and nutrient recycling of toilet waste benefit the Aral Sea region?

How to make your own biochar!

1. Fill a tin with firewood, organic waste etc. Punch a small hole in the part downwards as a gas exit. Put the tin in a fire. Foto: Lars Hylander

2. The fire after 15 min.

Foto: Lars Hylander

3. Pyrolyse gases are pressed out through the hole and gets ignited.

Foto: Lars Hylander

4. Allow to cool down and take out the char coal.

Spread on the fields or in the garden together with urine.

Foto: Aiko Nakano- Hylander

Irrigation

Ditches/furrows

Canals for supply and drainage

Irrigation techniques * Ditch/furrows/canals

- + Low investment costs
- Inefficient use of water
- * Sprayers of varying dimensions
- + High investment costs
- Inefficient use of water when windy and sunny
- Large energy use
- * **Drip** irrigation
- + Low to medium investment costs
- + Efficient use of water
- More complex management, clogging

How to reduce water use at irrigation?

- reducing evaporation

Don't irrigate when windy or sunny.

Use plastic films, mulching etc as evaporation barriers.

Create shadow and wind barriers, e.g. by trees/hedges or other means.

Proper service and management of equipment.

Considerations!

- Necessary to apply more water than the plants need!
- This so that excess water can leach away salts from the soil to avoid a salt desert as in the Aral Sea basin.
- Using waste water for irrigation may be an option, but be observant to pollutants and note that high salt content will be burning green leaves.

Conclusions

- Nature can not be manipulated behind certain limits.
- Need to **prioritise sustainability**.
- Go for resource conserving technologies.
- Go for robust systems, minimising the need of rare/not available experts, expensive spares etc.

Questions

• **<u>1. Could water flushed toilets be recommended</u>** in the Aral Sea region?

State conditions needed of a toilet system to be sustainable.

Consider also chemicals at risk of entering into ecocycles and nutrient management.

• <u>2. Discuss alternative technical opportunities to</u> generate cleaner water in the Aral Sea region?

Can reverse osmosis be used?

Water harvesting from the air?

https://www.svt.se/nyheter/video/03c63d7722bfbf7c-uppsalaforskare-skalosa-fragan-om-vattenbrist-sjalvforsorjandestader?spellista=WyJhc3RyaWQtdmlkZW9wbGF5bGlzdCIsIjQ2YXhwbiJd

Thank you for your attention! And thanks for protecting our valuable food resource

Good drinking water! Foto: Arne **Beware of PFAS**

Gunnarssonc